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ABSTRACT

The assimilation of atmospheric motion vectors (AMVs) provides important wind information to con-

ventional data-lacking oceanic regions, where tropical cyclones spend most of their lifetimes. Three new

AMV types, shortwave infrared (SWIR), clear-air water vapor (CAWV), and visible (VIS), are produced

hourly by NOAA/NESDIS and are assimilated in operational NWP systems. The new AMV data types are

added to the hourly infrared (IR) and cloud-top water vapor (CTWV) AMV data in the 2016 operational

version of the HWRFModel. In this study, we update existing quality control (QC) procedures and add new

procedures specific to tropical cyclone assimilation. We assess the impact of the three new AMV types on

tropical cyclone forecasts by conducting assimilation experiments for 25Atlantic tropical cyclones from the

2015 and 2016 hurricane seasons. Forecasts are analyzed by considering all tropical cyclones as a group and

classifying them into strong/weak storm vortices based on their initial model intensity.Metrics such as track

error, intensity error, minimum central pressure error, and storm size are used to assess the data impact

from the addition of the three newAMV types. Positive impact is obtained for these metrics, indicating that

assimilating SWIR-, CAWV-, and VIS-type AMVs are beneficial for tropical cyclone forecasting. Given

the results presented here, the newAMV types were accepted into NOAA/NCEP’s operational HWRF for

the 2017 hurricane season.

1. Introduction

The National Hurricane Center’s (NHC) yearly mean

absolute error plots for different forecast hours of track

and intensity show substantial improvement in tropical

cyclone (TC) track forecast error over the last 20 years,

with 72-h track errors being reduced by half (Cangialosi

and Franklin 2017; their Figs. 3 and 9). This improvement

is attributed to better global analyses and forecasts as the

tropical cyclone track is mostly determined by large-scale

environmental flow. However, in the case of intensity,

improvements in forecast skill have been smaller. Fore-

cast skill of intensity is largely driven by the fact that

tropical cyclone intensity is dependent on the accuracy of

modeling and observing storm-scale processes especially

in the inner core of the storm.Corresponding author: Agnes H. N. Lim, alim@ssec.wisc.edu
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Forecasting tropical cyclones requires adequate

modeling of the dynamical and physical processes to

simulate the growth and decay of the TC through its

lifespan. A good representation of the tropical cyclone’s

atmospheric state and nearby environment are also

needed to correctly simulate the interaction between

the storm and its environment. The value of wind

measurements in tropical cyclone forecasting was

demonstrated with the inclusion of dropwindsonde ob-

servations. Aberson and Franklin (1999), Aberson (2011),

Chou et al. (2011), and Christophersen et al. (2018)

showed that the assimilation of dropwindsonde data

provided significant improvements in the forecast TC

track and intensity. They also found evidence that

synoptic-scale observations in the upper tropospherewere

related to the improvement in TC intensity forecasts.

Historically, direct observation of the vector wind

field has been provided by conventional data (e.g., ra-

winsondes). These observations, however, are unevenly

distributed and often concentrated over land. The lack

of conventional observations in the tropical oceans

where tropical cyclones begin and spend most of their

life is mitigated by the existence and use of satellite

observations. Today’s data assimilation systems used to

forecast these tropical cyclones rely heavily on satellites

to provide the majority of the observations. The need

for a better representation of the analyzed TC envi-

ronment and surrounding synoptic circulation motivates

the use of derived satellite wind products to fill this

data void.

One type of satellite wind product is the atmospheric

motion vectors (AMVs). The AMVs are derived by track-

ing the horizontal motion of atmospheric fields such

as clouds or water vapor gradients from consecutive

satellite images taken 30minutes apart (Menzel 2001).

Both polar-orbiting and geostationary satellites use this

technique to derive AMVs. Geostationary satellites

are able to generate AMVs at higher temporal resolu-

tion than polar satellites due to their orbital and scan-

ning geometry (Velden et al. 2005). Numerical weather

prediction (NWP) centers such as the European Centre

for Medium-Range Weather Forecasts (ECMWF),

the Met Office, the Bureau of Meteorology (BoM),

the Korea Meteorological Agency (KMA), and the

National Centers for Environmental Prediction (NCEP)

have switched from AMVs generated once every 6 h to

using hourly generated AMVs in their global and/or

regional models after showing improved forecast skill

(Bormann et al. 2012; Cotton and Forsythe 2012; Le

Marshall et al. 2013; Lee et al. 2012; Su et al. 2014).

The abundance of high temporal and high spatial

resolution satellite AMVs in the tropics is especially

beneficial around tropical cyclones. Le Marshall and

Leslie (1999) showed that analyses and intensity fore-

casts of tropical cyclones had improved from the as-

similation of these AMVs, most notably in the upper

outflow regions. Hourly AMV assimilation studies

conducted by theU.S. Navy, using theNavyOperational

Global Atmospheric Prediction System (NOGAPS)

(Bayler and Lewit 1992), showed positive impacts in

tropical cyclone track forecasts (Langland et al. 2009;

Goerss 2009; Berger et al. 2011). Using a larger sample

size (50 cases in 2005 and 26 cases in 2006), Goerss

(2009) arrived at a similar conclusion. Goerss (2009)

found that the improvement in TC track forecasts

ranged from 7% to 24%, and were statistically signifi-

cant at all forecast lengths. For tropical cyclones in the

Coral Sea and the Atlantic Ocean, the benefits of hourly

cloud-drift winds from GOES-8 and Geostationary

Meteorological Satellite-5 (GMS-5) were explored using

different assimilation techniques conducted within a

limited-area model (Le Marshall et al. 1996a,b,c; Leslie

et al. 1998; Le Marshall and Leslie 1999). The results

indicated that assimilating hourly AMVs using varia-

tional assimilation techniques showed a 100–200-km

reduction in tropical cyclone mean track errors. Due

to the positive impact on tropical cyclone forecasts from

assimilating hourly AMVs, the goal of this work is to

expand the NCEP Hurricane and Weather Forecast

(HWRF) system to assimilate all five types of hourly

AMVs for operational tropical cyclone forecasting.

The paper is organized as follows. Section 2 provides a

summary of the AMVs used in this study and the 2016

HWRF system. Section 3a describes the new quality

control procedures and experimental design to assess

the impact of the new data types. In section 3b, a single

assimilation cycle is reviewed to demonstrate that the

analysis increments of the new AMV types are consis-

tent with the current AMV types in the HWRF system.

Section 4a discusses the results of the forecast perfor-

mance for all tropical cyclones during the 2015 and 2016

hurricane seasons. Forecast performance resulting from

the assimilation of the new hourly AMV types for strong

and weak storm vortices is examined in section 4b.

Section 5 gives a summary of the findings and future plans.

2. Background

a. GOES AMVs

The National Oceanic and Atmospheric Administra-

tion’s (NOAA)National Environmental Satellite, Data,

and Information Service (NESDIS) routinely generates

hourly AMVs from the GOES-East and West satellites

for use by NWP. Five types of AMVs are derived from

the geostationary images: shortwave infrared (SWIR),
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infrared (IR), cloud-top water vapor (CTWV), clear air

water vapor (CAWV), and visible (VIS). The GOES

spectral channels that are used to derive the different

AMV types are listed in Table 1. SWIR- and VIS-type

AMVs are located in the lower troposphere between 700

and 1000hPa, whereas the CTWV- and CAWV-type

AMVs reside predominantly in the upper troposphere,

between 100 and 400 hPa. The IR-type AMVs are pre-

dominantly below 800hPa and above 400hPa. AMV

wind speeds in the upper troposphere are faster than

those lower in the troposphere (Fig. 1). Coverage of

VIS- and SWIR-type AMVs are complementary due to

their diurnal patterns. VIS-type AMVs are available

during daylight hours; the SWIR-type AMVs are

available at night.

Two inputs are required to derive GOES AMVs,

three-time-sequence satellite images (triplet) andmodel

wind field forecasts valid at the time of the images. The

model forecast lengths are limited to within 9 h from the

time of the first satellite image of the triplet. The satellite

images are checked and corrected for navigation shifts

between the set of images using predetermined land-

mark points. Suitable tracer or vector targets are then

identified. These targets can be cloud edges, defined

cloud features, or gradients of water vapor. Cross cor-

relations are used to track the displacements of identi-

fied targets in the triplets with guidance from the model

forecast wind field. Potential height assignment values

are then calculated for each target scene using any or all

four of the following methods: the infrared window

channel, the water vapor histogram method, the water

vapor infrared window intercept method, and the CO2–

infrared window ratio method (Nieman et al. 1997).

These potential heights are determined by comparing

simulated brightness temperatures from Global Fore-

cast System (GFS) model first-guess values with that

from the observed. A ‘‘best’’ height assignment value,

as defined by the data provider, is then selected from

the four values depending on the satellite channel used

for the tracked images. The derived wind vectors

are then subjected to editing and quality control by

NESDIS. The current GOES AMVs have a height re-

assignment routine called the Auto-Editor. The wind

vector editor will examine the initial wind vector height

assignment and possibly reassign it with a value that is

derived from a variational penalty function (Velden

et al. 1997), which has a dependency on model forecast

wind, temperature, and pressure fields.

b. HWRF system

The HWRF is an atmosphere–ocean coupled system

dedicated to tropical cyclone application. Initial and

boundary conditions of the parent domain are pro-

vided by the NCEPGFS analysis. The HWRF employs

physical parameterization suite suitable for tropical

cyclone applications. The parameterizations are the

GFDL surface-layer parameterization, the Noah land

surface model (LSM; Chen and Dudhia 2001; Mitchell

2005), the Rapid Radiative Transfer Model for gen-

eral circulation models radiation scheme (RRTMG;

Iacono et al. 2008), the Ferrier–Aligo microphysics

(Rogers et al. 2001; Ferrier et al. 2002), the GFS Hybrid

Eddy Diffusivity Mass-Flux (Hybrid-ESMF) planetary

boundary layer (PBL) scheme (Gopalakrishnan et al.

2013), and the scale-aware GFS simplified Arakawa–

Schubert (SAS) deep and shallow convection scheme

TABLE 1. GOES imager spectral channels used to derive the

different AMV types.

Types of AMVs GOES spectral channel use

Visible (VIS) Channel 1: 0.68mm

Shortwave infrared (SWIR) Channel 2: 3.9mm

Cloud-top water vapor Channel 3: 6.9mm

Clear-air water vapor

Infrared Channel 4: 10.7mm

FIG. 1. Distribution of the different types of AMVs in

the atmosphere.
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(Arakawa and Schubert 1974; Grell 1993). Detailed

information on the 2016 HWRF can be found in

Biswas et al. (2016a,b).

The HWRF is configured with a parent domain and

two storm-following nested domains (Fig. 2). The parent

domain is roughly 808 3 808 with its center determined

by the initial location of the storm’s position and the

72-h forecast from NHC or the Joint Typhoon Warning

Center (JTWC). The two nested domains are 258 3 258
and 8.38 3 8.38. Both nested domains are two-way in-

teractive; that is, there is information exchange between

the domains and their parent domain. The three do-

mains have spatial resolutions of 0.1358 (;18km), 0.0458
(;6 km), and 0.0158 (;2 km) (Biswas et al. 2016a).

HWRF has two ghost domains used for data assimila-

tion (Tong et al. 2018). They have the same spatial

resolution as the nested domains. However, the

ghost domains have larger coverage (288 3 288 and 158 3
158). The ghost d02 domain sufficiently covers the

whole storm, while the ghost d03 domain is used pri-

marily to assimilate aircraft reconnaissance data. The

HWRF has 61 vertical levels and a model top at 2 hPa.

The vertical resolution remains the same for all three

domains.

The HWRF Data Assimilation System (HDAS) uses

a hybrid three-dimensional (3D) ensemble-variational

data assimilation (EnVar) system (Wang et al. 2013)

implementation of the Gridpoint Statistical Interpola-

tion (GSI). As the ensembles do not feedback into the

next analysis cycle, data assimilation performed on

the two ghost domains is termed ‘‘one-way hybrid.’’ The

first guess used to initialize the HWRF nested domains

is the NCEP Global Data Assimilation System (GDAS)

6-h forecast. Prior to data assimilation, the vortex (po-

sition, structure, and intensity) in the first guess is

modified based on the NHC’s Tropical Cyclone Vitals

(TC Vitals) database. The vortex to replace the first

guess can either be drawn from a HWRF 6-h forecast

from an earlier run or the GDAS 6-h forecast. If the

observed vortex maximum wind speed is greater or

equal to 14ms21 and a previous 6-h HWRF forecast is

available, the vortex from the 6-h HWRF forecast is

extracted. This vortex is corrected based on NHC’s TC

Vitals and inserted into the first guess. Otherwise, the

corrected vortex from the 6-h GDAS forecast is used.

Details on the vortex correction can be found in Biswas

et al. (2016b). This vortex-processing step, also known as

vortex initialization (Tong et al. 2018), is designed to

optimize forecast skill (Lu et al. 2017; Tong et al. 2018),

but it can limit the impact of adding new AMV types by

inhibiting the propagation of information from obser-

vations assimilated in earlier analysis cycles into the

current analysis cycle.

The use of a static background error covariance ma-

trix, which is isotropic and constrained by larger-scale

geostrophic balance, limits the spreading of observa-

tion information in the presence of a TC (Lu et al. 2017;

Tong et al. 2018). To provide information on the flow-

dependent error covariance for GSI, a 40-member

HWRF forecast-based ensemble is used when Tail

Doppler Radar (TDR) data are available. In the event

where there are no TDR data, the 80-member GFS

ensemble is used. Observation types that HDAS as-

similates are conventional observations (Table 2), TDR

data, satellite infrared and microwave radiances, hourly

GOES IR and CTWV-type AMVs, and Global Posi-

tioning System (GPS) radio occultation bending angle.

Tables 2 and 3 provide a complete list of observations

assimilated in HDAS. The HDAS assimilates observa-

tions within 63 h of the analysis time. Two outer loops

with 50 iterations each are used in GSI during the min-

imization process.

A merging procedure is applied after data assimi-

lation to combine the HDAS analyses to the GDAS

analysis, valid at the same time to produce the final

analysis. The data are interpolated to the parent and

nested domains to generate a final analysis to be used

to initialize the HWRF forecast. For TCs with maxi-

mum winds greater than 64 kt (1 kt ’ 0.51m s21), data

assimilation increments are excluded within 150 km

of the TC center and below 600 hPa. Data assimila-

tion increments are gradually introduced between

150 and 300 km. This exclusion is intended to allevi-

ate spindown problems but removes the impact from

assimilation of observations within 150 km of the TC

FIG. 2. HWRF data assimilation and forecast domains. The

parent domain is 808 3 808 with its center determined based on

the initial location of the storm’s position and the 72-h forecast

from NHC or the JTWC. The two nested domains are 258 3 258
and 8.38 3 8.38. Resolutions of the outer, middle, and inner do-

mains are 18, 6, and 2 km, respectively. Data assimilation is ap-

plied to the ghost d02 and d03 domains, and they have the same

spatial resolution as the nested domains, but with larger coverage

(288 3 288 and 158 3 158).
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center. For weak TCs (maximum winds less than

64 kt) data assimilation increments will play a part in

correcting the forecasts.

The HWRF system is only run when NHC or JTWC

identifies an area or disturbance that has the poten-

tial of becoming a tropical depression in their area of

responsibility. Once a tropical cyclone is identified,

the HWRF is run four times daily to produce 126-h

forecasts of TC track, intensity, structure, and rain-

fall. The HWRF run is terminated when the tropical

cyclone either dissipates after making landfall, be-

comes extratropical, or degenerates into a remnant

low. Figure 3 shows a schematic of various processes

that take place during an HWRF run during a single

analysis time.

Experiments in this study were run with the 2016

version of the operational HWRF/HDAS on the

NOAA High Performance Computing cluster JET.

The model configuration, runtime scripts, and all data

files were provided by NCEP, and experiments were

conducted in accordance with NCEP’s parallel testing

procedures.

3. Data assimilationof SWIR-,CAWV-, andVIS-type
AMVs derived from the heritage algorithm

a. Experimental setup, data quality control, and
observational error

Two sets of assimilation runs are completed for each

tropical cyclone case to evaluate the HWRF perfor-

mance with the addition of the new GOES AMV types.

The control (CTRL) assimilates the whole suite of ob-

servations used operationally as described in section 2b.

The AMVs types that are assimilated operationally

are the hourly IR and CTWV from GOES-East and

West. The experiment (AMV1) is identical to the CTRL

but with the additional assimilation of hourly SWIR-,

CAWV-, and VIS-type AMVs. These AMVs are al-

ready present in the NCEP data stream and ready to be

used by the assimilation system.

Current quality control (QC) procedures for AMVs

assimilated in the GSI are derived for the global model.

These QC procedures are based on metrics [AMV lo-

cation and departure (difference from the model first-

guess wind fields)] provided by the data producer.

TABLE 2. Conventional observations used within HDAS where T is temperature, Q is humidity, and Ps is surface pressure.

Instruments Variables assimilated

Synthetic tropical storm center Ps

Rawinsonde T, Q, Ps, and u- and y-component wind

AIREP and PREP pilot report aircraft T and u- and y-component wind

Aircraft Meteorological Data Relay (AMDAR) aircraft T and u- and y-component wind

Flight-level reconnaissance and profile dropsonde T, Q, and u- and y-component wind

Minimum obstruction clearance altitudes (MOCAs) aircraft temperature and humidity T, Q, u- and y-component wind

Surface marine ship, buoy, and C-MAN temperature, humidity, and surface pressure T, Q, Ps, and u- and y-component wind

Surface land and METAR T, Q, Ps, and u- and y-component wind

Splash-level dropsonde T, Q, and Ps

NEXRAD vertical azimuth display u- and y-component wind

Pilot balloon (PIBAL) u- and y-component wind

TABLE 3. Satellite observations used by HDAS.

Instrument Variables assimilated

HIRS IR radiances

Infrared atmospheric sounding interferometer (IASI)

AIRS

Cross-Track Infrared Sounder (CrIS)

SEVIRI

GOES Sounder

AMSU-A Microwave radiances

Microwave Humidity Sounder (MHS)

SSMIS

Advanced Technology Microwave Sounder (ATMS)

Hourly GOES infrared and cloud-top water-vapor-type AMVs Wind speed and direction

EUMETSAT AMVs

ASCAT scatterometer winds

GPS radio occultation Bending angles

GPS Integrated precipitable water
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The SWIR-, IR-, CTWV-, and VIS-type AMVs are

used if the assigned quality indicator (QI) (Holmlund

1998) computed without the forecast component is greater

than 85. The IR- and CTWV-type AMVs are used if

their normalized expected error (EE) (LeMarshall et al.

2004) (EE/AMV speed) is less than 0.8m s21. For low-

level IR-type AMVs with pressure values larger than

800 hPa, the normalized EEmust be less than 0.55m s21

to pass QC. All AMV types (SWIR, IR, CTWV, CAWV,

and VIS) are subjected to a near-surface and tropopause

check. Atmospheric motion vector observations with

pressures less than 950hPa and below the tropopause are

used. The IR-type AMV observations over land with lat-

itudes greater than 208N have been found to be problem-

atic and are rejected. In addition, IR-type AMVs with

pressure values between 400 and 800hPa and CTWV-type

AMVs with pressure values greater than 400hPa are ex-

cluded due to height assignment concerns. TheCAWV-type

AMVs are also rejected if the difference in the wind direc-

tion is greater than 508 from the forecast wind.

New HDAS QC checks for SWIR-, CAWV-, and

VIS-typeAMVswere added to optimize the use of these

observations in the HWRF. The low speed threshold of

CAWV-type AMVs was reduced from 10 to 8ms21.

This change increased the number of AMVs consid-

ered for assimilation. Statistics of normalized wind

speed differences and normalized vector differences

were calculated to investigate the performance of the

new QC procedures. Statistics were computed at 50-hPa

intervals for SWIR-, CAWV-, and VIS-type AMVs us-

ing innovations (observed 2 first guess) and analysis

error (observed 2 analysis). Figure 4 shows the calcu-

lated normalized wind speed differences and normalized

vector differences from all 39 assimilation cycles of

Hurricane Joaquin. Also plotted in Fig. 4 is the number

of observations assimilated with and without the new

QC checks for each AMV type to show how these

checks influence the total counts. Prior to additional

data filtering, large biases in normalized wind speed

differences are observed for SWIR-type AMVs with

pressures less than 700 hPa, CAWV-type AMVs with

pressures greater than 450hPa, and VIS-type AMVs

with pressures less than 750 hPa (orange and green

curves in Fig. 4). The large biasmay be a result of placing

the low-level AMVs at the base of a temperature in-

version, as explained by (Heidinger, 2010). Quality control

checks to limit AMVs in the vertical extent by rejecting

AMVs above–below a set of pressure levels are added to

remove observations that contribute to the large biases

(red and blue curves in Fig. 4). For SWIR-type AMVs, a

minimum pressure is set to 700 hPa and for VIS-type

AMVs the minimum pressure is set to 750 hPa. Like-

wise, CAWV-type AMVs are not used if their pressure

values are greater than 450 hPa. These QC procedures

FIG. 3. Flow diagram of a HWRF run at analysis time T. Blue-shaded boxes indicate components from NCEP’s global system. The tasks

enclosed by the green-shaded region indicate how the analysis of each of the HWRF domains is generated.
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were also checked using Tropical Storm Ida and Hurri-

cane Kate and found to be consistent. Table 4 summa-

rizes these QC procedures applied to the HWRFAMVs.

The observational errors for all five AMV types, as

defined in the GDAS, are a function of pressure and are

shown in Fig. 5. The observational errors range from

3.7m s21 near the surface to 7m s21 in the upper tro-

posphere. The application of a gross error check for the

AMVs is related to this error profile. SWIR-, CAWV-,

and VIS-type AMVs are rejected if their innovation

exceeds 2.5 times the error obtained from the error

profile. For reference, IR- and CTWV-type AMVs are

rejected if their innovations exceed 1.3 times the error

obtained from the error profile.

b. Examination of data impact on a single analysis

The ability to conduct an extensive analysis of the

impact of the SWIR-, CAWV-, and VIS-type AMVs

FIG. 4. Impact due to changes in QC procedures on (left) the mean AMV normalized speed departure from the

background/analysis (dashed) and the standard deviation of theAMVnormalized vector difference from the background/

analysis (solid) binnedat every 50hPa and (right) the correspondingnumber of observations assimilated for the (a) SWIR-,

(b) CAWV-, and (c) VIS-typeAMVs forHurricane Joaquin. Orange lines show the departure statistics and counts for the

AMVs compared to the first-guess background state (O–B) while green lines show the count and statistics for the AMV

departure with respect to the final analysis (O–A). Likewise, red (O–B) and blue (O–A) are the resulting count and

statistics with the additional QC procedures. Statistics are calculated from the entire life cycle of Hurricane Joaquin.
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assimilation on tropical cyclone modeling is limited

by the complexity of the HWRF setup as outlined in

section 2b. Such an analysis is also not the focus of

this study. However, examining a single analysis cycle

provides information on the influence of the new AMV

types on the analysis and demonstrates that themodified

analysis increment is consistent with analysis increments

without the new AMV types. In this section, two single

cycles are examined: one from Hurricane Joaquin, a

strong TC, and the other from Tropical Storm Ida, a

weak TC. The geographical and vertical coverage pat-

terns of the hourly AMV observations in assimilation

domain 2 for both cycles are shown in Fig. 6. Observa-

tions accepted for assimilation are located mainly in the

storm environment with the AMV data predominately

in the lower and upper troposphere. The lack of AMVs

near the TC center is due to the limits of the generation

of AMVs by the data producer in cases of extreme

changes in target direction and speed between images.

For Hurricane Joaquin, the 0000 UTC 2October 2015

cycle was chosen. The HWRF had been cycling for

4 days. At this time, Joaquin had a minimum central

pressure of 931 hPa and a maximum wind speed of

120 kt. Horizontal cross sections of analysis increment

(analysis 2 first guess) of temperature and wind speed

are taken at representative levels of the atmosphere and

are plotted in Fig. 7 for CTRL and AMV1. Plotted in

the third column are the differences of the analysis in-

crements between CTRL and AMV1 to show where the

analysis increments have changed from the assimilation of

the new AMV types. In data assimilation, a correction is

applied to the first guess based on a set of observations and

estimated errors that are present in both the observa-

tions and the first guess. The spreading of information

by the correlations within the background error co-

variance matrix resulted in analysis increments away

from the observations. From the analysis increment

plots of CTRL and AMV1, there is little change in the

wind speed analysis increments at 850 hPa. The analysis

increment difference plot shows a slight strengthening

of wind speed at the northeast quarter of the domain

and a weakening of wind speed of up to 2m s21 in the

southwestern corner of the domain. The change is

influenced by bothVIS- and SWIR-typeAMVs (Fig. 6a)

located in that region. At 250hPa (Fig. 7b), the largest

wind speed increment is located at 108N, 758W and is

enhanced with the assimilation of the new AMV types.

This region is dominated by the CAWV-type AMVs.

Adjustments made to temperature from the winds are

translated through the dynamical balances within the

GSI. The temperature analysis increment plot indicates

that with the assimilation of the SWIR-, CAWV-, and

VIS-type AMVs, there is warming from the analysis

adjustment near the center of the TC (Fig. 7c).

The meridional cross sections at 74.48W of the first

guess (contours) and analysis increment (shaded con-

tours) of zonal wind velocity, temperature, and specific

TABLE 4. QC procedures applied to GOES hourly AMVs in GSI. QCs in boldface are additional checks.

QC to reject observations AMV type subjected to this check

Pressure level of AMV , model tropopause 2 50 hPa SWIR, IR, CTWV, CAWV, and VIS

Pressure level of AMV . 950 hPa SWIR, IR, CTWV, CAWV, and VIS

QI without forecast , 85 SWIR, IR, CTWV, and VIS

Normalized EE . 0.8m s21 IR and CTWV

Pressure level of AMV. 800 hPa and normalized EE. 0.55m s21 IR

Over land for latitude greater than 208 IR

400 , pressure level of AMV , 800 hPa IR

Pressure level of AMV . 400 hPa CTWV

Wind direction . 508 CAWV

Wind speed , 8m s21 and pressure level of AMV . 450 hPa CAWV

Pressure level of AMV , 700 hPa SWIR

Pressure level of AMV , 750 hPa VIS

FIG. 5. Profile of observational error as a function of pressure used

for SWIR-, CAWV-, and VIS-type AMVs.
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humidity for ghost domain 2 are shown in Fig. 8. Plot-

ted in the third column of Fig. 8 are the differences in

analysis increments to aid identification of change due to

the addition of the new AMVs. In Fig. 8a, the reduction

in zonal wind increment relative to the CTRL is most

prominent in the midtroposphere south of the TC cen-

ter, implying a weaker anticyclonic increment with the

addition to the new AMV types. The u-component wind

increment is also reduced above 200 hPa in the

AMV1 experiment. Similar patterns are observed for

ghost domain 3 (not shown). For temperature (Fig. 8b),

the assimilation of the new AMV types causes less

cooling near the TC center. Similarly, for specific hu-

midity (Fig. 8c), there is less drying in themidtroposphere

near the storm center when including the new AMV

types. However, parts of the adjustment described are

removed by the merging step prior to running forecast. In

this step, for TC whose maximum wind speed is greater

than 64kt, the analysis increments from data assimilation

are zeroed out within 150km of the TC center and below

600hPa. This area is indicated by the hashed region in

each subplot in Fig. 8. Removing the analysis increments

fromGSI prevents the AMVwind-type observations and

other observations within 150km of the TC center from

influencing the inner core. Analysis increments are

gradually introduced into the final analysis between 150

and 300km.

Tropical Storm Ida had its lowest minimum central

pressure of 1001hPa and a maximum wind speed of

45kt at 1200 UTC 21 September 2015. At this time, the

HWRF had been cycling for 3 days. Plotted in Fig. 9 are

analysis increments of temperature at 850hPa, wind

speed analysis increments at 850 and 250hPa for CTRL

and AMV1, and their differences. At 850hPa, negative

wind speed increments are found on the right side of

the domain, and positive wind speed increments domi-

nate the left side of the domain (Fig. 9a). These changes

are caused by the VIS- and SWIR-type AMVs’ presence

in these regions, respectively (Fig. 6b).At 250hPa (Fig. 9b),

the CAWV-type AMVs enhanced the positive wind

speed increments at 188N, 358W. Temperature incre-

ments are generally small (Fig. 9c). Meridional cross

sections of the u-component wind at 48.18W (Fig. 10a)

show an increased anticyclonic increment at 350 hPa

at 108N. In Fig. 10b, cooling occurs at 208N between

100 and 200 hPa and between 500 and 700hPa. Above

400 hPa, the adjustment is due to the addition of

the CAWV-type AMV. There is increased moisture

FIG. 6. Distribution of different AMV types assimilated in HWRF at three different layers of the atmosphere for

one assimilation cycle for ghost domain d02. Storm center obtained from the NHC best track is marked with a cyan

dot. (a)Hurricane Joaquin at 0000UTC 2Oct 2015with the storm center located at 22.98N, 74.48Wand (b) Tropical

Storm Ida at 1200 UTC 21 Sep 2015 with the storm center located at 20.58N, 48.18W.
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(Fig. 10c) at about 700 hPa, south of the storm center.

From the distribution of AMVs assimilated between

400 and 800 hPa (Fig. 6b), few AMV observations

are assimilated in this part of the troposphere. The

adjustments observed are due to the spreading of in-

formation by the background error covariance ma-

trix. As Ida’s maximum wind speed is less than 64 kt,

the full analysis increments are present in the final

analysis. These increments will allow the impact ob-

tained from the data assimilation to influence the TC

inner core.

The magnitude of the correction made by the new

AMVs on the first guess in both storms is incremen-

tal. Similar patterns in analysis increments are ob-

served with and without the assimilation of the new

wind types. Reviewing these two single cycles’ analyses

provides confidence that the addition of the newAMVs

is consistent with the observations already present in

the system.

4. Results

Atlantic tropical cyclones from the 2015 and 2016

hurricane seasons are used to assess the impact of adding

hourly SWIR-, CAWV-, and VIS-type AMVs on trop-

ical cyclone forecasts. The list of tropical cyclones used,

the time period of each tropical cyclone when HWRF

was run, and the total number of data assimilation cycles

completed are shown in Table 5. This set includes a total

of 25 tropical cyclones: five major hurricanes, five hur-

ricanes, 13 tropical storms, and two tropical depressions.

Tropical cyclone forecast skill is evaluated by comparing

model forecasts against NHC’s postprocessed best-track

storm data.

The metrics used to measure the performance of

tropical cyclone forecasts are track error in nautical

miles (n mi; 1 n mi 5 1.852 km), intensity error (kt), in-

tensity bias (kt), and minimum central pressure error

(hPa), as well as average 34-, 50-, and 64-kt wind radii

FIG. 7. Analysis increment and difference of ghost domain d02 for Hurricane Joaquin. (a) Wind speed (m s21) at 850 hPa, (b) wind

speed (m s21) at 250 hPa, and (c) temperature (K) at 850 hPa at 0000 UTC 2 Oct 2015 for (left) CTRL, (center) AMV1, and (right)

AMV1 2 CTRL.
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errors. Track forecast error is defined as the great-circle

distance between a cyclone’s forecast position and the

best-track position at the forecast verification time. The

forecast track error is also decomposed into along-track

and across-track errors. The along-track error indicates

if the forecast is advancing the storm too fast or too slow.

The across-track error is an indicator of the position of

the storm, that is, if the forecast storm is to the right or to

the left with respect to the observed track. Intensity

error is defined as the absolute difference between the

forecast intensity and the best-track intensity at verify-

ing time. Intensity is defined as the maximum sustained

10-m winds. Mean wind radii errors at 34, 50, and 64kt

are the average of the wind radii errors at these speeds

from all four quadrants of the TC. The radius is defined

as the distance from the TC center to the location where

FIG. 8. First guess (black contours) and analysis increment (color shades) as well as differences for the meridional cross section of ghost

domain d02 for Hurricane Joaquin. Shown are the (a) u-component wind (kt), (b) temperature (K), and (c) specific humidity (g kg21) at

0000UTC 2Oct 2015 for (left) CTRL, (center) AMV1, and (right) AMV12CTRL. The cross section was taken through the center of the

storm defined by the NHC best track at 22.98N, 74.48W. The hashed region indicates area where analysis increments from GSI will be

removed in the merging step.
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the tangential wind has the required speed magnitude.

Mean wind radii can be used to measure the storm size

between different experiments (Tallapragada et al.

2014). Two skill scores, the relative skill and the fre-

quency of superior performance (FSP), are also used to

access the performance of the assimilation of the new

wind types against other models. The relative skill is

used as a measure of the magnitude of improvement/

degradation between the forecasts from the assimilation

runs and the climatology and persistence (CLIPER)

and Statistical Hurricane Intensity Forecast (SHIFOR)

statistical models. This metric is further normalized

with the CTRL run for convenience in this manuscript.

The FSP measures the frequency of model producing

a better forecast than another model (Velden and

Goldenberg 1987). The FSP looks at forecasts from

different models present in the NOAA Automated

Tropical Cyclone Forecast (ATCF) guidance comma-

delimited files (A-deck) and ranks the control and

experiment relative to these models. A value larger

than 50% is indicative that the control/experiment

forecast on average performs better than the other

models more than half the time. This skill score does

not include the effects of outliers and thus with a

sufficiently large sample can show the overall consis-

tency of the model performance. Both skill scores can

be evaluated together to better assess model perfor-

mance. For example, if FSP . 50 but the skill is

negative, this implies that on average there is forecast

improvement, but there are some strong outliers.

a. All storms statistics

Statistics are first computed using all Atlantic tropi-

cal cyclones from both the 2015 and 2016 hurricane

seasons. For figures described in this section and the

next, red lines indicate CTRL and blue lines indicate

AMV1. The number of samples used in deriving the

statistics for each forecast hour is labeled in green along

FIG. 9. Analysis increment and difference of ghost domain d02 for Tropical Storm Ida. (a) Wind speed (m s21) at 850 hPa, (b) wind

speed (m s21) at 250 hPa, and (c) temperature (K) at 850 hPa at 1200 UTC 21 Sep 2015 for (left) CTRL, (center) AMV1, and (right)

AMV1 2 CTRL.
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the secondary axis. The error bars represent a 95%

statistical confidence interval.

Forecasts of tropical cyclone intensity are improved

when the new AMV types were added for 36-h fore-

casts and beyond (Fig. 11a). The largest reduction of

intensity error occurs between the 72- and 96-h fore-

casts when comparing AMV1 to the CTRL. The im-

provement is, however, not statistically significant at

the 95% confidence level. Intensity bias (Fig. 11b)

shows that the CTRL has a less negative intensity bias

when the assimilation of the AMV wind types reduced

the intensity error. The minimum central pressure error

shows improvements for AMV1 compared to CTRL

beyond the 30-h forecasts (Fig. 11c). The minimum

center pressure bias is also reduced for AMV1 (not

shown) beyond the 36-h forecasts.

The 34- and 50-kt wind radii forecasts (Figs. 12a,b)

show improvement up to the 78- and 108-h forecasts,

FIG. 10. First guess (black contours) and analysis increment (shaded contours) as well as difference for the meridional cross section of

ghost domain d02 for Tropical Storm Ida. The (a) u-component wind (kt), (b) temperature (K), and (c) specific humidity (g kg21) at

1200 UTC 21 Sep 2015 for (left) CTRL, (center) AMV1, and (right) AMV12 CTRL. The cross section was taken through the center of

the storm defined by the NHC best track at 20.58N, 48.18W.
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respectively. With the assimilation of the new AMV

types, the 64-kt wind radius errors (Fig. 12c) are smaller

than the CTRL for 36-h forecasts and beyond. The im-

provements in storm sizes are not statistically significant

at the 95% confidence level.

Figure 13 shows the track error performance with and

without the addition of the new AMV types. Inclusion

of the SWIR-, CAWV-, and VIS-type AMVs has a

neutral impact on the total track forecast error for up

to the 72-h forecasts with slightly worse performance

beyond that point (Fig. 13a). A possible reason for the

neutral impact on the total track error is that these

three AMV types are not assimilated in NOAA’s op-

erational GDAS/GFS. The GDAS and GFS analyses

provide the initial and boundary conditions for the

HWRF. The large-scale environmental flow plays a

major role in tropical storm tracks (Cangialosi and

Franklin 2017). The inconsistencies in the large-scale

environmental flow between the initial and boundary

conditions and the HDAS analyses contribute to a lack

of improvements in the HWRF track forecasts. To

better understand the total track performance, the

total track error is decomposed into along-track and

across-track forecast errors (Figs. 13b,c). These two

track metrics show that the assimilation of the new

AMV types improve the storm advancement (along

track) forecasts and the veering of the forecast path

(across track) from the observed track out to the 72-h

forecasts.

The range in the track-relative skill is between 24%

and 2%. A positive relative skill of less than 5% is ob-

tained for 3–9- and 15–33-h forecasts for track.

Track-relative skill for AMV1 is negative beyond

36-h forecasts. Total track error FSP performs better

for the experiment for the 6-h forecasts. Beyond that,

track FSP for the control simulation performs slightly

better. Track error FSP and relative skill are consis-

tent from 3- to 9-h forecasts. Figures for the total

track error relative skill and FSP are not shown.

Figure 14a shows positive relative skill for intensity

beyond the 36-h forecasts. This positive relative skill

reaches its maximum of 15% between 84- and 108-h

forecasts. FSP for intensity error (Fig. 14b) is greater than

50% between 36- and 96-h forecasts and consistent with

relative skill.

b. Strong and weak storm vortices

Model tropical cyclone vortices are binned based on

their intensity at the initial forecast time and statistics

of their forecast performance with and without the as-

similation of SWIR-, CAWV-, and VIS-type AMVs are

computed. Since vortex initialization is performed at the

beginning of each assimilation cycle, the initial model

storm intensity is very close to that of the NHC best

TABLE 5. List of TCs used in this study. Storm categorization is extracted from NHC reports.

Start and end date Tropical cyclone name Storm category No. of assimilation cycles

1800 UTC 13 Jul–0000 UTC 15 Jul 2015 Claudette Tropical storm 6

1200UTC 18Aug–1200UTC 24Aug 2015 Danny Major hurricane 25

0000UTC 25Aug–1200UTC 29Aug 2015 Erika Tropical storm 19

0600 UTC 30 Aug–1800 UTC 6 Sep 2015 Fred Hurricane 31

1200 UTC 5 Sep–1200 UTC 9 Sep 2015 Grace Tropical storm 17

0600 UTC 9 Sep–1800 UTC 11 Sep 2015 Henri Tropical storm 15

1200 UTC 16 Sep–0000 UTC 20 Sep 2015 Nine Tropical depression 15

1200 UTC 18 Sep–1800 UTC 27 Sep 2015 Ida Tropical storm 38

0000 UTC 28 Sep–1200 UTC 7 Oct 2015 Joaquin Major hurricane 39

0000 UTC 9 Nov–0600 UTC 12 Nov 2015 Kate Hurricane 14

1200 UTC 27 May–0000 UTC 5 Jun 2016 Bonnie Tropical storm 35

1200 UTC 5 Jun–1800 UTC 7 Jun 2016 Colin Tropical storm 10

0000 UTC 20 Jun–0600 UTC 21 Jun 2016 Danielle Tropical storm 6

1200 UTC 2 Aug–1200 UTC 6 Aug 2016 Earl Hurricane 16

0000UTC 17Aug–1200UTC 23Aug 2016 Fiona Tropical storm 27

1800 UTC 22 Aug–0600 UTC 3 Sep 2016 Gaston Major hurricane 45

1200UTC 28Aug–1800UTC 31Aug 2016 Eight Tropical depression 18

1800 UTC 28 Aug–1200 UTC 6 Sep 2016 Hermine Hurricane 33

1200 UTC 12 Sep–1200 UTC 16 Sep 2016 Ian Tropical storm 16

0000 UTC 14 Sep–0600 UTC 19 Sep 2016 Julia Tropical storm 22

1200 UTC 14 Sep–1200 UTC 25 Sep 2016 Karl Tropical storm 44

1800 UTC 19 Sep–0000 UTC 25 Sep 2016 Lisa Tropical storm 22

1200 UTC 28 Sep–1800 UTC 9 Oct 2016 Mathew Major hurricane 46

1200 UTC 4 Oct–0600 UTC 18 Oct 2016 Nicole Major hurricane 56

0600 UTC 21 Nov–0000UTC 25 Nov 2016 Otto Hurricane 16
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track. If the model initial intensity is greater than 64 kt,

then the storm vortex is classified as strong; otherwise,

it is classified as weak. The choice of the 64-kt thresh-

olds follows the Saffir–Simpson hurricane wind scale

(http://www.nhc.noaa.gov/pdf/sshws.pdf) for hurricane

classification.

Figure 15 shows plots of the intensity error, the min-

imum central pressure error, and the minimum central

pressure bias for strong and weak TC vortices as a func-

tion of forecast lead time. Assimilation of the newAMVs

shows a positive impact for storm intensity for both

groups of TC vortices (Fig. 15a). Comparing AMV1 to

CTRL, the positive impact in intensity error reduction is

apparent after the 24- and 36-h forecasts for the strong

and weak TC storm vortices. For both groups of storm

vortices, a positive impact is observed out to the 126-h

forecasts. Themagnitude of the intensity error reduction

is larger for weak TC vortices at longer lead hours com-

pared to strong TCs. In both cases, the intensity error

reduction is statistically not significant at the 95% con-

fidence interval. Improvement in the intensity error

in weak TC vortices is associated with a reduction in

the positive intensity bias (Fig. 15b). Error reduction in

FIG. 11. Verification statistics for the 2015 and 2016 hurricane

seasons for control (red) and experiment with the addition of

SWIR-, CAWV-, and VIS-type AMVs (blue). Shown are the

(a) intensity error measured using maximum sustained 10-m

winds, (b) intensity bias, and (c) minimum central pressure. Error

bars represent a 95% confidence interval. The number of samples

used in deriving these statistics is shown in green.

FIG. 12. Verification statistics for the 2015 and 2016 hurricane

seasons for control (red) and experiment with the addition of

SWIR-, CAWV-, and VIS-type AMVs (blue). The average (a) 34-,

(b) 50-, and (c) 64-kt radius errors. Error bars represent a 95%

confidence interval. The number of samples used in deriving these

statistics is shown in green.
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minimum center pressure error for weak TC vortices is

observed for lead times greater than 48-h forecasts

(Fig. 15c) with the assimilation of the new AMV types.

The impact on strong TC vortices is mixed. Reduction in

minimum central pressure bias (not shown) is in line

with the reduction of the minimum central pressure er-

ror. For weak storm vortices, the minimum central

pressure bias error is smaller for AMV1 compared to

CTRL beyond the 78-h forecasts. For strong storm

vortices, a reduction in minimum central pressure bias

occurs in forecasts up to 60h. For intensity relative skill

(Fig. 15d), positive skill is obtained for both strong and

weak TC vortices beyond the 48-h forecasts for AMV1.

The addition of the three new AMV types produces

better forecasts, resulting in improved intensity fore-

casts compared to those of the CTRL between the 36-

and 96-h forecasts for weak storm vortices. For strong

TC vortices, AMV1 produces superior storm intensity

predictions beyond the 66-h forecasts (Fig. 15e).

Regardless of the strength of the TC vortex deter-

mined at the initial forecast time, assimilation of the new

AMVs has a neutral impact on the total track error

(Fig. 16a) up to the 48-h forecasts. Improvement in track

error is observed beyond 60-h forecasts for strong TC

vortices. For weak TC vortices, degradation in track

error forecasts is observed beyond 48-h forecasts. The

total track error is again decomposed into along-track

and across-track errors to identify any positive impact

from adding the new AMV types. Comparing AMV1

with CTRL, along-track error improvement is observed

for weak TC vortices after 36-h forecasts. (Fig. 16b). The

influence of the new AMV types on along-track errors

is negative for strong tropical cyclone vortices. In the

case of across-track error, both strong and weak TC

vortices achieve positive impacts out to the 90-h fore-

casts (Fig. 16c) with the assimilation of hourly SWIR-,

CAWV-, and VIS-type AMVs. For track-relative skill

performance, Fig. 16d shows that the assimilation of the

three AMV types has a negative influence on weak TC

FIG. 13. Verification statistics for the 2015 and 2016 hurricane

seasons for control (red) and experiment with the addition of

SWIR-, CAWV-, and VIS-type AMVs (blue). Shown are the

(a) track error, (b) along-track error, and (c) across-track error.

Error bars represent a 95% confidence interval. The number of

samples used in deriving these statistics is shown in green.

FIG. 14. Skill performance for the 2015 and 2016 hurricane sea-

sons for control (red) and experiment with the addition of SWIR-,

CAWV-, and VIS-type AMVs (blue). Shown are the (a) intensity

relative skill and (b) intensity error FSP. The number of samples

used in deriving these statistics is shown in green.
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FIG. 15. Verification statistics for weak and strong storm vortices grouped based

on initial model intensity at each cycle. Control is shown in red and the experiment

with the addition of SWIR-, CAWV-, and VIS-type AMVs in blue. Shown are the

(a) intensity error, (b) intensity bias, (c) minimum central pressure, (d) intensity rel-

ative skill, and (e) intensity FSP error. Error bars represent a 95%confidence interval.

The number of samples used in deriving these statistics is shown in green.
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FIG. 16. Verification statistics for weak and strong storm vortices grouped based on initial model intensity

at each cycle. Control is shown in red and the experiment with the addition of SWIR-, CAWV-, andVIS-type

AMRs in blue. Shown are the (a) total track error, (b) along-track error, (c) across-track error, and (d) track

relative skill error. Error bars represent a 95% confidence interval. The number of samples used in deriving

these statistics is shown in green.
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vortices’ total track error for most of the forecast time

periods. In the case of the strong TC vortices, the result

is mixed out to the 60-h forecasts but becomes positive

beyond that time. Examining the track error FSP shows

that the experiments with the assimilation of SWIR-,

CAWV-, and VIS-type AMVs (i.e., AMV1) do not pro-

duce sufficient superior forecasts compared to the CTRL

experiment for weak storm vortex track errors. The re-

sults are mixed for strong TC vortices for forecasts less

than 60h (not shown).

Figure 17 shows storm radii forecast performance

for both categories of TC vortices. Positive impact

for more forecast lengths is achieved for both the 34-

and 50-kt wind radii for strong TC vortices with the

addition of the three new AMV types. For the 34-kt

wind radius, error is reduced out to the 72-h forecasts

for the weak TC vortices and 96-h forecasts for the

strong TC vortices. The 50-kt wind radius error is

reduced out to 48- and 96-h forecasts for weak and

strong TC vortices, respectively. The improvement is

statistically not significant at the 95% confidence

level. The impact on the 64-kt wind radii is neutral

(not shown).

Statistics show that the assimilation of the new AMV

types has a positive impact for both types of TC vorti-

ces, but with metrics for weak TC vortices seeing greater

error reduction. This is consistent with the findings in

Tong et al. (2018). Tong et al. found that assimilating

high-density observations in the TC inner core produces

better intensity forecasts for tropical storms as data as-

similation corrects the large positive intensity bias in-

troduced by vortex initialization for weak storms. In the

case of strong TCs, the merging step in HWRF re-

moves the data assimilation impact within 150 km of

the TC center, inhibiting data assimilation from cor-

recting the intensity bias.

5. Summary

In this study, hourly SWIR-, CAWV-, and VIS-type

AMVs are added to the hourly IR- and CTWV-type

AMVs for assimilation using the 2016 operational

HWRFModel. New QC procedures were added to GSI

to tighten the selection criteria of the new AMV types,

while the existing quality control procedures were

reviewed and customized for the assimilation of AMVs

in HWRF. The changes made are as follows. 1) The

minimum threshold wind speed of CAWV-type AMVs

was lowered from 10 to 8ms21 to increase the number of

CAWV-typeAMVs for assimilation. 2) Low-levelAMVs

were limited in the vertical extent by rejecting AMVs

with pressure values less than a set level; for SWIR-type

AMVs, this value is 700 hPa and for VIS-type AMVs

the cutoff is at 750hPa. Likewise, upper-level CAWV-type

FIG. 17. Verification statistics for strong and weak storm vortices grouped based on model

initial intensity at each cycle. Control is shown in red and the experiment with the addition of

SWIR-, CAWV-, and VIS-type AMVs in blue. Shown are the (a) 34- and (b) 50-kt wind radii.

Error bars represent a 95% confidence interval. The number of samples used in deriving these

statistics is shown in green.
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AMVsare not used if their pressure values are greater than

450hPa. 3) Observational errors for the new AMV types

are set to range from 3.7ms21 near the surface to 7ms21

at the middle of the troposphere and above.

Twenty-five Atlantic tropical cyclones from both

the 2015 and 2016 hurricane seasons examined in this

study provided statistics used to assess the impact from

the assimilation of the hourly SWIR-, CAWV-, and

VIS-type AMVs. There are five major hurricanes, five

hurricanes, 13 tropical storms, and two tropical depres-

sions in this set of storms.Metrics used tomeasure changes

in tropical cyclone forecast skill include track error, in-

tensity error, minimum central pressure error, and wind

radii (storm size). Forecasts generated from experi-

ments assimilating the three new hourly AMV types are

compared with forecasts from the control HWRF anal-

ysis using an operational configuration.

Results from the assimilation of hourly SWIR-,

CAWV-, and VIS-type AMVs show improvements in

intensity forecasts. The magnitude of improvement of

intensity forecasts is larger at longer lead times. A re-

duction in minimum central pressure errors from 30-h

forecasts onward is also obtained when the SWIR-,

CAWV-, and VIS-type AMVs are added. In terms of

storm size, which is measured using the average 34- and

50-kt wind radii, improvement is achieved for the first

78- and 108-h forecasts, respectively, when new AMV

types are used. In terms of intensity skill score, assimi-

lation of the SWIR-, CAWV-, and VIS-type AMVs

improves the intensity after 36 forecasts hours. The

magnitude of improvement is as large as 15% between

the 84- and 108-h forecasts. Analyses from AMV1 also

produce a higher frequency of forecasts superior to the

CTRL between the 36- and 96-h forecasts. Although the

overall impact on track error forecasting is neutral, an-

alyzing the along-track and across-track errors reveals

that the translational speed of storms and the deflection

of forecast paths compared to the observed path have

improved out to 72-h forecasts.

TC vortices are binned based on their model intensity

at the initial forecast time. Statistics related to forecast

performance are calculated with and without the as-

similation of the new AMV wind types. Results reveal

that the assimilation of SWIR-, CAWV-, and VIS-type

AMVs show positive impacts on different metrics for

both groups of vortices. Intensity error improvement

begins after 24-h forecasts for the strong storms, and the

positive impact starts after 36-h forecasts for the weak

storms. The magnitude of the intensity error reduction

is larger for weak storms at longer forecast lead hours.

The minimum central pressure error of weak storms

also improved beyond the 48-h forecasts. Reduction in

minimum central pressure bias occurs up to the 60-h

forecasts for the strong storm vortices and after 78-h

forecasts for the weak storm vortices. The intensity

relative skill performance shows that positive influence

begins at a later time for strong storm vortices compare

to the weak ones. Strong storm vortices have smaller

storm size errors over longer forecast periods compared

to the weak storm vortices. Small improvements in track

forecast are observed for strong storm vortices at longer

lead times. Results indicated that the impact of the as-

similation of the new AMV wind types is dependent on

the initial intensity of the TC vortex.

In summary, this research found that the tropical

cyclone intensity forecast benefits most from the assimi-

lation of more hourly AMVs. Other metrics such as

minimum central pressure error and wind radii error in-

dicate better forecasts have been produced from analyses

that include the assimilation of the three newAMV types.

Given the positive results obtained from this study, these

new types of AMVs have been accepted into the opera-

tional HWRF assimilation system beginning with the

2017 hurricane season even though the results are statis-

tically insignificant at the 95% confidence level.

The next step is to assimilate AMVs derived from

the GOES-16 Advanced Baseline Imager (ABI), which

FIG. 18. Low-level (700–950 hPa) wind vectors using visible

images for Hurricane Sandy. (a) Current operational AMVs de-

rived from 15-min images via the heritage winds algorithm.

(b) AMVs derived from 5-min images using the GOES-R nested

tracking winds algorithm.
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replaced GOES-East in January 2018. These AMVs,

derived using a new nested-tracking algorithm (Bresky

et al. 2012), have better quality and are at higher spatial

and temporal resolution (Fig. 18). According to Bresky

et al. (2012), AMVs derived from the new nested track-

ing algorithm have reduced the low speed bias and the

improved root-mean-square-error. A study conducted

by Velden et al. (2017), assimilating GOES-13 AMVs

derived using this new algorithm on three Atlantic

tropical cyclones shows a modest positive impact on

HWRF forecasts. These AMVs will also be assimilated

in NCEP’s GDAS, providing better and more consis-

tent initial conditions for HWRF. A data assimilation

system that allows for the simultaneous assimilation of

asynchronous observations such as the 4DEnVar de-

veloped within the HWRF framework (Lu et al. 2017)

can further utilize the temporal information of the

GOES-16 AMVs.
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